Nereis. Interdisciplinary Ibero-American Journal of Methods, Modelling and Simulation.

Buscador

Face masks with a smart fabric

Abstract

Face masks made of a smart fabric capable of instantly inactivating enveloped viruses and antibiotic-resistant bacteria have been developed using a low-cost antimicrobial technology. Thus, this smart fabric is capable of inactivating the severe acute respiratory syndrome type 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) and antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. This new technology has been transferred from the laboratory (www.serranobblab.com) to the industry (www.visormed.com/es) in record time for the mass production of new generation FFP2 masks and surgical masks in both adult and child sizes. These face masks possess antimicrobial activity and thus provide great protection to their users against microbial infections. These new face masks will be very useful to reduce COVID-19 infections in the current pandemic and other infections caused by enveloped respiratory viruses such as influenza. They will also provide great protection to the general population in future pandemics and in the menace of the exponentially growing threat of bacterial resistance to antibiotics.

References

WHO, Coronavirus disease (COVID-19) Pandemic, World Heal. Organ. 2019 (2020) 2633. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

R. Verity, L.C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-Dannenburg, H. Thompson, P.G.T. Walker, H. Fu, A. Dighe, J.T. Griffin, M. Baguelin, S. Bhatia, A. Boonyasiri, A. Cori, Z. Cucunubá, R. FitzJohn, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, D. Laydon, G. Nedjati-Gilani, S. Riley, S. van Elsland, E. Volz, H. Wang, Y. Wang, X. Xi, C.A. Donnelly, A.C. Ghani, N.M. Ferguson, Estimates of the severity of coronavirus disease 2019: a model-based analysis, Lancet. Infect. Dis. (2020). https://doi.org/10.1016/S1473-3099(20)30243-7.

J.F.W. Chan, K.H. Kok, Z. Zhu, H. Chu, K.K.W. To, S. Yuan, K.Y. Yuen, Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Microbes Infect. 9 (2020) 221–236. https://doi.org/10.1080/22221751.2020.1719902.

R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, Y. Bi, X. Ma, F. Zhan, L. Wang, T. Hu, H. Zhou, Z. Hu, W. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J. Yuan, Z. Xie, J. Ma, W.J. Liu, D. Wang, W. Xu, E.C. Holmes, G.F. Gao, G. Wu, W. Chen, W. Shi, W. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet. 395 (2020) 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8.

N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727–733. https://doi.org/10.1056/NEJMoa2001017.

K.G. Andersen, A. Rambaut, W.I. Lipkin, E.C. Holmes, R.F. Garry, The proximal origin of SARS-CoV-2, Nat. Med. (2020) 1–3. https://doi.org/10.1038/s41591-020-0820-9.

M. Seyran, D. Pizzol, P. Adadi, T.M.A. El?Aziz, S.S. Hassan, A. Soares, R. Kandimalla, K. Lundstrom, M. Tambuwala, A.A.A. Aljabali, A. Lal, G.K. Azad, P.P. Choudhury, V.N. Uversky, S.P. Sherchan, B.D. Uhal, N. Rezaei, A.M. Brufsky, Questions concerning the proximal origin of SARS?CoV?2, J. Med. Virol. (2020) jmv.26478. https://doi.org/10.1002/jmv.26478.

V.M. Corman, D. Muth, D. Niemeyer, C. Drosten, Hosts and Sources of Endemic Human Coronaviruses, in: Adv. Virus Res., 2018: pp. 163–188. https://doi.org/10.1016/bs.aivir.2018.01.001.

X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, Y. Wu, L. Zhang, Z. Yu, M. Fang, T. Yu, Y. Wang, S. Pan, X. Zou, S. Yuan, Y. Shang, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir. Med. 8 (2020) 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5.

S.N. Shah, R.G. Bachur, D.L. Simel, M.I. Neuman, Childhood pneumonia, JAMA - J. Am. Med. Assoc. 318 (2017) 490. https://doi.org/10.1001/jama.2017.9428.

D.R. Brenner, J.R. McLaughlin, R.J. Hung, Previous lung diseases and lung cancer risk: A systematic review and meta-analysis, PLoS One. 6 (2011). https://doi.org/10.1371/journal.pone.0017479.

M.B. Rothberg, S.D. Haessler, R.B. Brown, Complications of Viral Influenza, Am. J. Med. 121 (2008) 258–264. https://doi.org/10.1016/j.amjmed.2007.10.040.

I.C. Su, K.L. Lee, H.Y. Liu, H.C. Chuang, L.Y. Chen, Y.J. Lee, Severe community-acquired pneumonia due to Pseudomonas aeruginosa coinfection in an influenza A(H1N1)pdm09 patient, J. Microbiol. Immunol. Infect. 52 (2019) 365–366. https://doi.org/10.1016/j.jmii.2018.05.007.

C.C. Chou, C.F. Shen, S.J. Chen, H.M. Chen, Y.C. Wang, W.S. Chang, Y.T. Chang, W.Y. Chen, C.Y. Huang, C.C. Kuo, M.C. Li, J.F. Lin, S.P. Lin, S.W. Ting, T.C. Weng, P.S. Wu, U.I. Wu, P.C. Lin, S.S.J. Lee, Y.S. Chen, Y.C. Liu, Y.C. Chuang, C.J. Yu, L.M. Huang, M.C. Lin, Recommendations and guidelines for the treatment of pneumonia in Taiwan, J. Microbiol. Immunol. Infect. 52 (2019) 172–199. https://doi.org/10.1016/j.jmii.2018.11.004.

J.Y. Lee, P.C. Yang, C. Chang, I.T. Lin, W.C. Ko, C.T. Cia, Community-acquired adenoviral and pneumococcal pneumonia complicated by pulmonary aspergillosis in an immunocompetent adult, J. Microbiol. Immunol. Infect. 52 (2019) 838–839. https://doi.org/10.1016/j.jmii.2019.05.014.

W.C. Albrich, F. Rassouli, F. Waldeck, C. Berger, F. Baty, Influence of Older Age and Other Risk Factors on Pneumonia Hospitalization in Switzerland in the Pneumococcal Vaccine Era, Front. Med. 6 (2019). https://doi.org/10.3389/fmed.2019.00286.

K. Lundstrom, Coronavirus pandemic-Therapy and vaccines, Biomedicines. 8 (2020) 109. https://doi.org/10.3390/BIOMEDICINES8050109.

G. Chauhan, M.J. Madou, S. Kalra, V. Chopra, D. Ghosh, Nanotechnology for COVID-19: Therapeutics and Vaccine Research, ACS Nano. 14 (2020) 7760–7782. https://doi.org/10.1021/acsnano.0c04006.

D.R. Feikin, A. Schuchat, M. Kolczak, N.L. Barrett, L.H. Harrison, L. Lefkowitz, A. McGeer, M.M. Farley, D.J. Vugia, C. Lexau, K.R. Stefonek, J.E. Patterson, J.H. Jorgensen, Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995-1997, Am. J. Public Health. 90 (2000) 223–229. https://doi.org/10.2105/AJPH.90.2.223.

B. Huttner, B. Cappello, G. Cooke, S. Gandra, S. Harbarth, M. Imi, M. Loeb, M. Mendelson, L. Moja, C. Pulcini, M. Sharland, E. Tacconnelli, M. Zeng, N. Magrini, 2019 community-acquired pneumonia treatment guidelines: There is a need for a change toward more parsimonious antibiotic use, Am. J. Respir. Crit. Care Med. 201 (2020) 1315–1316. https://doi.org/10.1164/rccm.201911-2226LE.

A. Lal, J. Akhtar, A. Ullah, G.M. Abraham, First Case of Pleural Empyema Caused by Staphylococcus simulans?: Review of the Literature, Case Rep. Infect. Dis. 2018 (2018) 1–5. https://doi.org/10.1155/2018/7831284.

K. Kümmerer, Resistance in the environment, J. Antimicrob. Chemother. 54 (2004) 311–320. doi:10.1093/jac/dkh325.

S.B. Levy, M. Bonnie, Antibacterial resistance worldwide: Causes, challenges and responses, Nat. Med. 10 (2004) S122–S129. doi:10.1038/nm1145.

V.W.L. Ng, J.M.W. Chan, H. Sardon, R.J. Ono, J.M. García, Y.Y. Yang, J.L. Hedrick, Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections, Adv. Drug Deliv. Rev. 78 (2014) 46–62. doi:10.1016/j.addr.2014.10.028.

J. Fernández, F. Bert, M.H. Nicolas-Chanoine, The challenges of multi-drug-resistance in hepatology, J. Hepatol. 65 (2016) 1043–1054. doi:10.1016/j.jhep.2016.08.006.

E.R.M. Sydnor, T.M. Perl, Hospital epidemiology and infection control in acute-care settings, Clin. Microbiol. Rev. 24 (2011) 141–173. doi:10.1128/CMR.00027-10.

A.J. Alanis, Resistance to antibiotics: Are we in the post-antibiotic era?, Arch. Med. Res. 36 (2005) 697–705. doi:10.1016/j.arcmed.2005.06.009.

R.A. Puiu, G. Dolete, A.M. Ene, B. Nicoar?, G.M. Vl?sceanu, A.M. Holban, A.M. Grumezescu, A. Bolocan, Properties of biofilms developed on medical devices, in: Biofilms Implant. Med. Devices Infect. Control, Elsevier, 2016: pp. 25–46. doi:10.1016/B978-0-08-100382-4.00002-2.

M. Gotte, A. Berghuis, G. Matlashewski, M.A. Wainberg, D. Sheppard, Handbook of antimicrobial resistance, Springer New York, New York, NY, 2017. doi:10.1007/978-1-4939-0694-9.

WHO | Antimicrobial resistance: global report on surveillance 2014, World Health Organization, 2016.

P. Holmstrup, B. Klausen, The growing problem of antimicrobial resistance, Oral Dis. (2017). doi:10.1111/odi.12610.

World Health Organization, WHO | Antimicrobial resistance, WHO. (2017). http://www.who.int/mediacentre/factsheets/fs194/en/ (accedido 26 Enero, 2022).

J. O ’neill, Tackling Drug-Resistant Infections Globally: Final Report and Recommendations the Review on Antimicrobial Resistance, (2016). doi:10.1016/j.jpha.2015.11.005.

WHO | High levels of antibiotic resistance found worldwide, new data shows, WHO. (2018). http://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/en/.

J.D.D. Pitout, P. Nordmann, L. Poirel, Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance, Antimicrob. Agents Chemother. 59 (2015) 5873–5884. doi:10.1128/AAC.01019-15.

D.A. Tadesse, S. Zhao, E. Tong, S. Ayers, A. Singh, M.J. Bartholomew, P.F. McDermott, Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950-2002, Emerg. Infect. Dis. 18 (2012) 741–749. doi:10.3201/eid1805.111153.

T.J. Foster, Antibiotic resistance in Staphylococcus aureus. Current status and future prospects, FEMS Microbiol. Rev. 41 (2017) 430–449. doi:10.1093/femsre/fux007.

A.M. Dondorp, F. Nosten, P. Yi, D. Das, A.P. Phyo, J. Tarning, K.M. Lwin, F. Ariey, W. Hanpithakpong, S.J. Lee, P. Ringwald, K. Silamut, M. Imwong, K. Chotivanich, P. Lim, T. Herdman, S.S. An, S. Yeung, P. Singhasivanon, N.P.J. Day, N. Lindegardh, D. Socheat, N.J. White, Artemisinin Resistance in Plasmodium falciparum Malaria, N. Engl. J. Med. 361 (2009) 455–467. doi:10.1056/NEJMoa0808859.

F. Kyeyune, R.M. Gibson, I. Nanky, C. Venner, S. Metha, J. Akao, E. Ndashimye, C.M. Kityo, R.A. Salata, P. Mugyenyi, E.J. Arts, M.E. Quiñones-Mateua, Low-Frequency Drug Resistance in HIV-Infected Ugandans on Antiretroviral Treatment Is Associated with Regimen Failure, Antimicrob.

Antimicrobial Resistance Collaborators, Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, The Lancet 399 (2022) 629–55

A. Tuñón-Molina, K. Takayama, E. M. Redwan, V. N. Uversky, J. Andrés, Á. Serrano-Aroca, Protective Face Masks: Current Status and Future Trends, ACS Applied Materials & Interfaces 13, 48, (2021) 56725–56751

J. Zhang, B. Li, L. Wu, A. Wang, Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes, Chem. Commun. 49, (2013) 11509–11511.

O. Das, R.E. Neisiany, A.J. Capezza, M.S. Hedenqvist, M. Försth, Q. Xu, L. Jiang, D. Ji, S. Ramakrishna, The need for fully bio-based facemasks to counter coronavirus outbreaks: A perspective. Sci. Total Environ. 736, (2020) 139611.

WHO. Antibiotic Resistance. Available online: https://www.who.int/health-topics/antimicrobial-resistance (accedido el 2 de Enero 2022)

K.C. Wade, D.K. Benjamin, Clinical Pharmacology of Anti-Infective Drugs. In Infectious Diseases of the Fetus and Newborn Infant; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1160–1211.

J.Y.H. Lee, I.R. Monk, A. Gonçalves da Silva, T. Seemann, K.Y.L. Chua, A. Kearns, R. Hill, N. Woodford, M.D. Bartels, B. Strommenger, et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 3, (2018) 1175–1185.

S. Lakhundi, K. Zhang, Methicillin-Resistant Staphylococcus aureus?: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 31, (2018) e00020-18.

D. Chessa, G. Ganau, L. Spiga, A. Bulla, V. Mazzarello, G.V. Campus, S. Rubino, Staphylococcus aureus and Staphylococcus epidermidis Virulence Strains as Causative Agents of Persistent Infections in Breast Implants. PLoS ONE 11, (2016) e0146668.

A.M. Kropinski, A. Mazzocco, T.E. Waddell, E. Lingohr, R.P. Johnson, Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501, (2009) 69–76

S. Matsuyama, N. Nao, K. Shirato, M. Kawase, S. Saito, I. Takayama, N. Nagata, T. Sekizuka, H. Katoh, Kato, F.; et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2- expressing cells. Proc. Natl. Acad. Sci. USA 117, (2020) 7001–7003

M. Martí, B. Frígols, Á. Serrano-Aroca, Antimicrobial Characterization of Advanced Materials for Bioengineering Applications. J. Vis. Exp. (2018) e57710, doi:10.3791/57710.

W. Shao, H. Liu, X. Liu, S. Wang, J. Wu, R. Zhang, H. Min, M. Huang, Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr. Polym. 132, (2015) 351–358.

S.R. Gill, D.E. Fouts, G.L. Archer, E.F. Mongodin, R.T. DeBoy, J. Ravel, I.T. Paulsen, J.F. Kolonay, L. Brinkac, M. Beanan, et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187, (2005) 2426–2438.

G.D. Christensen, A.L. Bisno, J.T. Parisi, B. McLaughlin, M.G. Hester, R.W. Luther, Nosocomial septicemia due to multiply antibiotic-resistant Staphylococcus epidermidis. Ann. Intern. Med. 96, (1982) 1–10.

M. Martí, A. Tuñón-Molina, F.L. Aachmann, Y. Muramoto, T. Noda, K. Takayama, and Á. Serrano-Aroca, Protective Face Mask Filter Capable of Inactivating SARS-CoV-2, and Methicillin-Resistant Staphylococcus aureus and Staphylococcus epidermidis, Polymers 13(2), (2021) 207

D . Baltimore, Expression of animal virus genomes. Bacteriol. Rev. 35, (1971) 235–241

C.L. Schrank, K.P.C. Minbiole, W.M. Wuest, Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect. Dis. 6, (2020) 1553–1557.

P.I. Hora, S.G. Pati, P.J. McNamara, W.A. Arnold, Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environ. Sci. Technol. Lett. 7, (2020) 622–631.

E. Tuladhar, M.C. de Koning, I. Fundeanu, R. Beumer, E. Duizer, Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus. Appl. Environ. Microbiol. 78, (2012) 2456–2458.

T. Yamanaka, H. Bannai, K. Tsujimura, M. Nemoto, T. Kondo, T. Matsumura, Comparison of the virucidal effects of disinfectant agents against equine influenza a virus. J. Equine Vet. Sci. 34, (2014) 715–718.

C.P. Gerba, Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 81, (2015) 464–469.

I.A. Neac?u, A.I. Nicoar?, O.R. Vasile, B.?. Vasile, Inorganic micro- and nanostructured implants for tissue engineering. In Nanobiomaterials in Hard Tissue Engineering: Applications of Nanobiomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 271–29

Downloads

Download data is not yet available.