Nereis. Interdisciplinary Ibero-American Journal of Methods, Modelling and Simulation.


Experimental model of actinic keratosis due to exposure to ultraviolet A radiation


Actinic keratoses are frequent preneoplastic skin lesions caused by chronic exposure to solar radiation. Obtaining animal models that contribute to understanding the mechanisms involved in this pathology and evaluating new pharmacological therapies is of great interest to the scientific community. A biomodel of actinic keratosis was developed in Balb/c mice, using UVA radiation as an inducer. Two irradiation schemes were applied: Group I, exposed to three daily radiation sessions of 2h and Group II, two daily sessions of 4h, with the same break time between sessions and for a period of 14 days. Macroscopic and microscopic parameters were evaluated, as well as the frequency of appearance of micronuclei in peripheral blood. The animals corresponding to Group I did not show mascroscopic lesions and microscopically they showed a slight acanthosis with the absence of dysplasia; while in Group II animals macroscopic lesions were observed that histopathologically correlate with the presence of an actinic keratosis. The frequency of micronuclei obtained in Group II was significantly higher than the formation of spontaneous micronuclei in the Control Group. The experimental biomodel of actinic keratosis obtained reproduces the effect of ultraviolet radiation on the skin.



Bray F, Ferlay J, Soerjomataram I, Siegel RL,Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality world wide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

John SM, Trakatelli M, Gehring R, Finlay K, Fionda C, Wittlich M, et al. CONSENSUS REPORT: Recognizing non-melanoma skin cancer, including actinic keratosis, as an occupational disease-A Call to Action. J Eur Acad Dermatol Venereol. 2016;30(Suppl. 3):38-45.

Vimercati L, De Maria L, Caputi A, Silvana CE, Mansi F, Cavone D, et al. Non-Melanoma Skin Cancer in Outdoor Workers: A Study on Actinic Keratosis in Italian Navy Personnel. Int J Environ Res Public Health. 2020;17(7):2321. doi: 10.3390/ijerph17072321. PMID: 32235587; PMCID: PMC7177289.

Schmitz L, Kahl P, Majores M, Bierhoff E, Stockfleth E, Dirschka T. Actinic keratosis: correlation between clinical and histological classification systems. J Eur Acad Dermatol Venereol. 2016;30(8):1303-07.

Filosa A, Filosa G. Actinic keratosis and squamous cell carcinoma: clinical and pathological features. G Ital Dermatol Venereol. 2015;150(4):379-84.

Ferrándiz C, Plazas MJ, Sabaté M, Palomino R, EPIQA Study Group. Prevalence of actinic keratosis among dermatology outpatients in Spain. Actas Dermosifiliogr. 2016;107(8): 674-80.

Prieto HC, Marchiori BR. Actinic keratoses: review of clinical, dermoscopic, and therapeutic aspects. An Bras Dermatol. 2019;94(6):637-57.

Hensen P, Müller ML, Haschemi R, Ständer H, Luger TA, Sunderkötter C, et al. Predisposing factors of actinic keratosis in a North-West German population. Eur J Dermatol. 2015;19(4):345-54.

Schmitz L, Gambichler T, Kost C, Gupta G, Stucker M, Stockfleth E, et al. Cutaneous squamous cell carcinomas are associated with basal proliferating actinic keratoses. Br J Dermatol. 2019; 180(4):916-21.

Zaeem A, Sultan AM, Maqbool A, Ellahi BM, Hussain T. UV radiations from sunlight as a potential carcinogen for the development of skin malignancy: A review of the current status and future prospects. Biomedical Letters. 2019;5(2):79-87.

Xian D, Lai R, Song J, Xiong X, Zhong J. Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. Oxidative Medicine and Cellular Longevity. 2019(3):1-11, ID 8127362. doi: 10.1155/2019/8127362. PMID: 31636809; PMCID: PMC6766104

Van de Glind G, Rebel H, Van Kempen M, Tensen K, De Gruijl F. Fractionation of a tumor-initiating UV dose introduces DNA damage-retaining cells in hairless mouse skin and renders subsequent TPA-promoted tumors non-regressing. Oncotarget. 2016;7: 8067-77.

Bakshi A, Shafi R, Nelson J, Cantrell WC, Subhadarshani S, Andea A, et al. The clinical course of actinic keratosis correlates with underlying molecular mechanisms. Br J Dermatol. 2020;182(4):995-1002.

Heerfordt IM , Nissen CV, Poulsen T , Philipsen PA , Wulf HC. Thickness of actinic keratosis does not predict dysplasia severity or P53 expression. Sci Rep. 2016; 6:33952. doi: 10.1038/srep33952. PMID: 27670104; PMCID: PMC5037398.

Gegotek A, Bielawska K, Biernacki M, Dobrzy?ska I, Skrzydlewska E. Time-dependent effect of rutin on skin fibroblasts membrane disruption following UV radiation. Redox Biology. 2017;12:733-44.

Tewari A, Sarkany RP, Young AR. UVA induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo. J. Invest. Dermatol. 2012;132:394-400.

Brash DE. UV signature mutations. Photochem Photobiol. 2015;91(1):15-26.

Schmitz L, Grinblat B, Novak B, Hoeh AK, Handschke K, Dobbeler CV, et al. Somatic mutations in kinetochore gene KNSTRN are associated with basal proliferating actinic keratoses and cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol. 2019; 33(8):1535-40.

McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. British Journal of Pharmacology. 2010;160(7):1573-1576.

Cano GA, Gómez GF, Álvarez SN, Sánchez-Pedreño GP, Vicente OV. Modelo de fotocarcinogénesis cutánea en ratones SKH-1 por radiación ultravioleta. Rev Esp Patol. 2010;43(4):191-95.

Gómez GF, López LA, Guerrero SY, Sánchez SM, Martínez DF, Camacho AF. Chemopreventive effect of pomegranate and cocoa extracts on ultraviolet radiation induced photocarcinogenesis in SKH-1 mice. PLoSONE. 2020;15(4): e0232009. doi: 10.1371/journal.pone.0232009. PMID: 32353018; PMCID: PMC7192448.

Close B, Banister K, Baumans V, Bernoth E, Bromage N, Bunyan J, et al. Recommendations for the euthanasia of experimental animals. Lab Animal. 1997;31(1),1-32.

Schmitt VJ, Miot HA. Actinic keratosis: a clinical and epidemiological revision. An Bras Dermatol. 2012; 87(3): 425-34.

Li X, Li Z, Han Z, Zhang L, Liu Z, Liu B. Gene Expression Patterns of Cutaneous Squamous Cell Carcinoma and Actinic Keratosis: Biomarkers Screening for Skin Disease Diagnosis. Ann Dermatol. 2018;30(5):536-43.

Yoshifuku A, Fujii K, Kanekura T. Comparison of oxidative stress on DNA, protein and lipids in patients with actinic keratosis, Bowen’s disease and squamous cell carcinoma. The Journal of Dermatology. 2018;45 (11):1319-23.

Yamaba H, Haba M, Kunita M, Sakaida T, Tanaka H, Yashiro Y, et al. Morphological change of skin fibroblasts induced by UV Irradiation is involved in photoaging. Exp. Dermatol. 2016; 25(Suppl 3):45-51.

Benjamin CL, Ananthaswamy HN. p53 and the pathogenesis of skin cancer. Toxicology and Applied Pharmacology. 2007;224(3):241-48.

Vaisman A, Woodgate R. Translesion DNA polymerases in eukaryotes: what makes them tick?. Crit. Rev. Biochem. Mol. Biol. 2017;52(3):274-303.

Matheus LT, Bolaños A. Micronúcleos: biomarcador de genotoxicidad en expuestos a plaguicidas. Revista de la Facultad de Ciencias de la Salud. Universidad de Carabobo. 2014;18(2):18-26.

Hoyos GL, Ramos AJ, Reyes CI. Evaluación de riesgo de cáncer en personas expuestas ocupacionalmente a solventes orgánicos. Rev Salud Pública. 2020;22(3):1-5.

Zúñiga GG, Gómez MB, Zamora PA, Martínez GM, Bautista BM, Patiño VS, et al. Micronucleated erythrocytes in newborns rats exposed to three different types of ultraviolet-A (UVA) lamps from commonly uses devices. Journal of Photochemistry and Photobiology B: Biology. 2016; 165:141-46. doi: 10.1016/j.jphotobiol.2016.10.021. PMID: 27792890.

Landrigan PJ, Espina C, Neira M. Global prevention of environmental and occupational cancer. Environmental Health Perspectives. 2011;119(7):a280-a281. doi:10.1289/ehp.1103871. PMID: 21719377; PMCID: PMC3222998.


Download data is not yet available.