Nereis. Interdisciplinary Ibero-American Journal of Methods, Modelling and Simulation.

Buscador

Visualization of the Avogadro Number

Abstract

On the occasion of the redefinition of the Avogadro constant, a brief history and some didactic reflections on its magnitude are presented. Some analogies are reviewed and others are suggested to help visualize the extent of its magnitude, and their usefulness is assessed. These analogies are set in the teaching context of the first and second courses of the degrees in several scientific and technic disciplines. Their effectiveness is discussed for the first time on the basis of a questionnaire filled by the corresponding students. The suggestions for educating and learning are that the most helpful models, following the opinion of the students, are those related to more substantial items, for example, neurons, individuals, planets, above analogies on geometric constructions. Challenging current thought, pictorial descriptions are not all the times so advantageous.

References

Sidney PG, Thompson CA. Implicit analogies in learning: supporting transfer by warming up. Curr. Dir. Psychol. Sci. 2019:28(6):619-625.

Shapiro MA. Analogies, visualization, and mental processing of science stories. Ann. Int. Commun. Assoc. 1986:9(1):339-355.

López Nomdedeu G. Teoría y práctica de la creatividad. Rev. Esp. Pedagog. 1974:32(128):495-537.

Treagust DF, Duit R, Lindauer I, Joslin P. Teachers' use of analogies in their regular teaching routines. Res. Sci. Educ. 1989:19(1):291-299.

Treagust DF. The evolution of an approach for using analogies in teaching and learning science. Res. Sci. Educ. 1993:23(1):293-301.

Harrison AG. How do teachers and textbook writers model scientific ideas for students? Res. Sci. Educ. 2001:31:401–435.

Levinson PJ, Carpenter RL. An analysis of analogical reasoning in children. Child Dev. 1974 857-861.

Gentner D. Structure-mapping: a theoretical framework for analogy. Cognitive Sci. 1983:7:155–170.

Thiele RB, Treagust DF. Using analogies in secondary chemistry teaching. Obtenido de https://eric.ed.gov/?id=ED356137.

Glynn SM. Making science concepts meaningful to students: teaching with analogies. Four Decades of Research in Science Education-from Curriculum Development to Quality Improvement: From Curriculum Development to Quality Improvement, 113. Münster, Germany: Waxmann. 2008

Sutton C. Figuring out a scientific understanding. J. Res. Sci. Teach. 1993:31(10):1215-1227.

Ruef K. The private eye: (5X) looking/thinking by analogy. Seattle, WA: The Private Eye Project; 1998.

Markman AB, Moreau CP. Analogy and analogical comparison in choice. En: Gentner D, Holyoak KJ, Kokinov BN, editores. The analogical mind: Perspectives from Cognitive Science. Cambridge, MA: MIT Press; 2001. P. 363-399.

Coll RK, France B, Taylor I. The role of models and analogies in science education: implications from research. Int. J. Sci. Educ. 2005:27:183-198.

Aubusson PJ, Harrison AG, Ritchie SM. Metaphor and analogy. En: Metaphor and analogy in science education. Dordrecht: Springer; 2006. p. 1-9.

Goswami U. Analogical reasoning in children. En Children's Learning in Laboratory and Classroom Contexts New York, NY: Routledge. 2007. p. 73-88

Raviolo A, Garritz A. Analogies in the teaching of chemical equilibrium: a synthesis/analysis of the literature. Chem. Educ. Res. Pract. 2009:10(1):5-13.

Mair C, Martincova M, Shepperd M. A literature review of expert problem solving using analogy. En: 13th International Conference on Evaluation & Assessment in Software Engineering, 20-21 April 2009, Durham, UK. 2009

Bellocchi A. Learning in the third space: a sociocultural perspective on learning with analogies. Tesis doctoral, Queensland University of Technology, Brisbane, Queensland, Australia; 2009. p. 19-45.

Gentner D. Bootstrapping the mind: analogical processes and symbol systems. Cognitive Sci. 2010:34(5), 752-775.

Etzion D, Ferraro F. The role of analogy in the institutionalization of sustainability reporting. Organ. Sci. 2010:21(5):1092-1107.

Petrucci M. Scientific visualizations: bridge-building between the sciences and the humanities via visual analogy. Interdiscip. Sci. Rev. 2011:36(4):276-300.

Klahr D, Chen Z. Finding one’s place in transfer space. Child Dev. Perspect. 2011:5:196–204.

Day SB, Goldstone RL. The import of knowledge export: connecting findings and theories of transfer of learning. Educ. Psychol. 2012:47:153–176.

Mozzer NB, Justi R. Science teachers’ analogical reasoning. Res. Sci. Educ., 2013:43(4):1689-1713.

Vendetti MS, Matlen BJ, Richland LE, Bunge SA. Analogical reasoning in the classroom: insights from Cognitive Science. Mind Brain Educ. 2015:9:100–106.

English LD. Analogies, metaphors, and images: vehicles for mathematical reasoning. En: Mathematical Reasoning (pp. 11-26). New York, NY: Routledge. 2013

Goh NK, Subramanian R, Chia LSA more direct feeling for Avogadro’s number. J. Chem. Educ., 1994:71(8):656–657.

Pekda? B, Azizo?lu N. Semantic mistakes and didactic difficulties in teaching the “amount of substance” concept: a useful model. Chem. Educ. Res. Pract:2013:14(1):117-129.

Schmidt H. An alternate path to stoichiometric problem solving. Res. Sci. Educ.1997:27:237.

Giunta CJ. The Mole and Amount of Substance in Chemistry and Education: Beyond Official Definitions. J. Chem. Educ. 2015:92(10):1593?1597.

Davis RS. What Is a Kilogram in the Revised International System of Units (SI)? J. Chem. Educ. 2015:92(10):1604?1609.

Rees S, Kind V, Newton D. The development of chemical language usage by “non-traditional” students: the interlanguage analogy. Res. Sci. Educ., 2018 1-20.

Mweshi E, Munyati O, Nachiyunde K. Teacher’s mole concept pedagogical content knowledge: developing the model for the mole concept content representations framework. Chem. Educ. Res. Pract. 2019:10(8):51–65.

Furió C, Azcona R, Guisasola J. The learning and teaching of the concepts ‘amount of substance’ and ‘mole’: a review of the literature. Chem. Educ. Res. Pract., 2002:3(3):277–292.

Wikipedia. Constante de Avogadro. Obtenido de https://es.wikipedia.org/wiki/Constante_de_Avogadro.

Nernst W. Theoretical Chemistry from the Standpoint of Avogadro’s Rule & Thermodynamics. 2nd ed. London: Macmillan & Co. Ltd; 1904. p. 39-42

Chang R, Goldsby KA. Chemistry. 12th ed. New York, NY: McGraw Hill Education; 2016. p. 183-184.

Cannizzaro, S. (1858). Lettera del prof. Stanislao Cannizzaro al prof.S. De Luca; sunto di un corso di filosofia chimica, fatto nella R. Universita di Genova. Il Nuovo Cimento, 7(1), 321–368.

Meyer L. Die modernen Theorien der Chemie und ihre Bedeutung für die chemische Statik, 1st ed. Breslau: Maruschke & Berendt; 1864.

Partington JRA Short History of Chemistry:3rd ed. New York: Dover Pub; 1989.

Jensen WB. How and when did Avogadro’s name become associated with Avogadro’s number? J. Chem. Educ., 2007:84(2):223.

Morselli M. Amedeo Avogadro, a scientific biography Dordrecht, Netherlands: D. Reidel. 1984. p. 87-271.

Thompson CA, Opfer JE. How 15 hundred is like 15 cherries: effect of progressive alignment on representational changes in numerical cognition. Child Dev. 2010:81:1768–1786.

Poskozim PS, Wazorick JW, Tiempetpaisal P, Poskozim JA. Analogies for Avogadro's number. J. Chem. Educ. 1986:63(2):125.

Lubeck HV. How to visualize Avogadro’s number. J. Chem. Educ., 1989:66(9):762.

Diemente D. Demonstrations of the enormity of Avogadro’s number. J. Chem. Educ. 1998:75(12):1565.

Uthe RE. For mole problems, call Avogadro: 602-1023. J. Chem. Educ., 2002:79(10):1213.

Krulwich R. Which is greater, the number of sand grains on earth or stars in the sky? Obtenido de https://www.npr.org/sections/krulwich/2012/09/17/161096233/which-is-greater-the-number-of-sand-grains-on-earth-or-stars-in-the-sky. 2012.

European Space Agency How many stars are there in the Universe? Obtenido de http://www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe. 2019.

Harrison E. Cosmology: The Science of the Universe, 2nd ed. Cambridge University Press: New York, 2000, p. 474

National Solar Observatory. Mass size and density of the universe. Obtenido de https://people.cs.umass.edu/~immerman/stanford/universe.html. 2001.

Sepp S. Brain games with sand grains. Obtenido de https://www.sandatlas.org/brain-games-with-sand-grains.

Pinto G. An example of body-centered cubic crystal structure: the atomium in Brussels as an educative tool for introductory materials chemistry. J. Chem. Educ. 2012:89(7):921-924.

Wikipedia. Problema de trigo y tablero de ajedrez. Obtenido de https://es.wikipedia.org/wiki/Problema_del_trigo_y_del_tablero_de_ajedrez.

Wikipedia. Población mundial. Obtenido de https://es.wikipedia.org/wiki/Poblaci%C3%B3n_mundial

Skorstad J, Falkenhainer B, Gentner D. Analogical processing: a simulation and empirical corroboration. Proc. AAAI 1987:6:322-326.

Faries JM, Reiser BJ. Access and use of previous solutions in a problem solving situation (No. CSL-29). Princeton Univ Nj Cognitive Sci. Lab. 1988

Duit R. On the role of analogies and metaphors in learning science. Sci. Educ., 1991:75(6):649-672.

Duit R. On the role of analogies, similes, and metaphors in learning science. In Papers presented at the Annual Meeting of the American Educational Research Association, Atlanta. 1990

Tenney Y, Gentner D. What makes analogies accessible: experiments on the water-flow analogy for electricity. En: Duit R, Jung W, von Rhoneck C, editores. Aspects of understanding electricity. Kiel: IPNiSchmidt & Klaunig; 1985. p. 1-318.

Dagher Z. Review of studies on the effectiveness of instructional analogies in science education. Sci. Educ., 1995:79(3):295-312.

Piaget J. La evolución de los métodos de enseñanza. En Psicología y pedagogía. Madrid: Sarpe: 1969 p. 95-112.

Downloads

Download data is not yet available.