Antioxidant effect of Chondrus crispus and Lentinula edodes on different margarines

Authors

  • Helen Sofia Carvache Meneses Universidad Católica de Valencia San Vicente Mártir.
  • Jessica Mura Universidad Católica de Valencia San Vicente Mártir.
  • Juan José Serra Bisbal Doctoral School. Universidad Católica de Valencia San Vicente Mártir.
  • Irene Sarrion Sos Department of Experimental Sciences and Mathematics. Faculty of Veterinary and Experimental Sciences. Universidad Católica de Valencia San Vicente Mártir.
  • Carmen Fagoaga Garcia Department of Experimental Sciences and Mathematics. Faculty of Veterinary and Experimental Sciences. Universidad Católica de Valencia San Vicente Mártir.

DOI:

https://doi.org/10.46583/nereis_2021.13.819

Keywords:

oxidative stability, Rancimat, lipid oxidation

Abstract

Lipid oxidation is the reaction responsible for food degradation, to solve this problem the agri-food industry uses antioxidants, preservatives and chemical stabilizers. Currently there is an increasingly strong demand for healthier eating, because of this, the industry is increasingly interested in replacing chemical compounds with natural products of equal or greater effectiveness. This project studies oxidative stability in margarines of different composition, both qualitative and quantitative, when independently adding dehydrated material from a fungus (Lentinula edodes) and a seaweed (Chondrus crispus), which are characterized for having antioxidant activity. To achieve this, Rancimat equipment was used at different temperatures: 110 ºC, 120 ºC, 130 ºC and 140 ºC ± 1.6 ºC. comparing treated margarine samples with their respective controls. Results varied depending on the temperatures used, the composition of margarines and the natural antioxidants added. The results show that the margarine with a lower proportion in unsaturated fatty acids, and especially in polyunsaturated fatty acids, have greater oxidative stability and it increases to a greater degree when the fungus is added with respect to the addition of seaweed.

Downloads

Download data is not yet available.

References

Frankel, E. N. (2014). Lipid oxidation: Elsevier.

McClements, D., & Decker, E. (2000). Lipid oxidation in oil?in?water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of food science, 65(8), 1270-1282.

Pawar, N., Purohit, A., Gandhi, K., Arora, S., & Singh, R. (2014). Effect of operational parameters on determination of oxidative stability measured by Rancimat method. International journal of food properties, 17(9), 2082-2088.

Guillén, M. a. D., & Cabo, N. (2002). Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food chemistry, 77(4), 503-510.

Madhavi, D. L., Deshpande, S., & Salunkhe, D. K. (1995). Food antioxidants: Technological: Toxicological and health perspectives: CRC Press.

Moure, A., Cruz, J. M., Franco, D., Dom??nguez, J. M., Sineiro, J., Dom??nguez, H., Parajó, J. C. (2001). Natural antioxidants from residual sources. Food chemistry, 72(2), 145-171.

Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry, 46(10), 4113-4117.

Fernandes, R. d. P. P., Trindade, M. A., & de Melo, M. P. (2018). Natural antioxidants and food applications: healthy perspectives Alternative and Replacement Foods (pp. 31-64): Elsevier.

Redondo?Cuevas, L., Castellano, G., & Raikos, V. (2017). Natural antioxidants from herbs and spices improve the oxidative stability and frying performance of vegetable oils. International Journal of Food Science & Technology, 52(11), 2422-2428.

Dinh, T. V., Saravana, P. S., Woo, H. C., & Chun, B. S. (2018). Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Separation and Purification Technology, 196, 287-299.

Koch, K., Hagen, W., Graeve, M., & Bischof, K. (2017). Fatty acid compositions associated with high-light tolerance in the intertidal rhodophytes Mastocarpus stellatus and Chondrus crispus. Helgoland marine research, 71(1), 15.

Pomin, V. H. (2010). Structural and functional insights into sulfated galactans: a systematic review. Glycoconjugate journal, 27(1), 1-12.

Wasser, S. P. (2005). Shiitake (Lentinus edodes). Encyclopedia of dietary supplements, 653-664.

Diallo, I., Michel, A., Morel, S., Poucheret, P., Manon, V., Traoré, L., Fons, F. (2017). Nutritional and antioxidant properties of Lentinula edodes (Shiitake) from various culture conditions. Paper presented at the 5ème Symposium International AFERP « Pharmacognosy from here and there », Angers, France.

Zivanovic, S., Buescher, R., & Kim, S. (2003). Mushroom texture, cell wall composition, color, and ultrastructure as affected by pH and temperature. Journal of Food Science, 68(5), 1860-1865.

Man, D. (2002). Food Industry briefing series: Shelf life. Blachwell Science Ltd Ed. UK.

892 Professional Rancimat Manual (Cartographer). (2017). 892 Professional Rancimat Manual.

Fernandes, R. d. P. P., Trindade, M. A., y de Melo, M. P. (2018). Natural antioxidants and food applications: healthy perspectives Alternative and Replacement Foods (pp. 31-64): Elsevier.

Franco, D., and Moure, A. (2010). Natural antioxidants: Healthy, toxicological aspects and industrial applications. Editorial Xunta de Galicia, 102p.

Jiang, J., y Xiong, Y. L. (2016). Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat science, 120, 107-117.

Li, T., Han, X., Bao, R., Hao, Y., y Li, S. (2019). Preparation and properties of water-in-oil shiitake mushroom polysaccharide nanoemulsion. International journal of biological macromolecules, 343-349.

Raikos, V. (2017). Natural antioxidants for food applications: challenges and recent developments. EC Nutrition.

Redondo?Cuevas, L., Castellano, G., y Raikos, V. (2017). Natural antioxidants from herbs and spices improve the oxidative stability and frying performance of vegetable oils. International Journal of Food Science & Technology, 52(11), 2422-2428.

Shahidi, F. (2000). Antioxidants in food and food antioxidants. Food/nahrung, 44(3), 158-163.

Velioglu, Y., Mazza, G., Gao, L., y Oomah, B. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry, 46(10), 4113-4117.

Cheung, L., Cheung, P. C., & Ooi, V. E. (2003). Antioxidant activity and total phenolics of edible mushroom extracts. Food chemistry, 81(2), 249-255.

Kitzberger, C. S. G., Smânia Jr, A., Pedrosa, R. C., & Ferreira, S. R. S. (2007). Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids. Journal of food engineering, 80(2), 631-638.

Ávila Castañeda, I. M. (2009). Estudio de los compuestos polifenolicos con énfasis en flavonoides del hongo Lentinula edodes y determinación de la actividad antioxidante”/“Study of the polyphenolic compounds with emphasisoin flavonoids of mushroom Lentinula edodes and determination of the antioxidant activity. Química.

Cox, S., Abu-Ghannam, N., & Gupta, S. (2010). An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal, 17(1), 205-220.

Iradi, M. G. G. (2017). Study of the antioxidant activity of various aromatic and/or edible plants. Doctoral dissertation, Universitat Politécnica de Catalunya.

Downloads

Published

2021-11-15