3D printing by fused deposition modelling: Handling, operation and biomedical applications

Authors

  • Alba Cano Vicent Escuela de Doctorado. Biomaterials and Bioengineering Lab. Centro de Investigación Traslacional San Alberto Magno. Universidad Católica de Valencia San Vicente Mártir.
  • Ángel Serrano Aroca Biomaterials and Bioengineering Lab. Centro de Investigación Traslacional San Alberto Magno. Universidad Católica de Valencia San Vicente Mártir.

DOI:

https://doi.org/10.46583/nereis_2021.13.809

Keywords:

3D printing, fused deposition modeling, biomaterials, biomedicine, scaffolds, bioprinting, regenerative medicine

Abstract

The development of 3D printing is growing exponentially due to their unique characteristics. Thus, this technique is capable of fabricating custom pieces in a reproducible and personalized way. Although it is still far from its optimal development due to the still slow printing speed and the limitations of materials available for 3D printing in the market currently, this technology is constantly broadening its application areas which covers form building construction to organ fabrication. Among all the 3D printing techniques developed so far, fused deposition modeling (FDM) is one of the most common and it allows the construction of advanced pieces from computer-aided design. This article presents all the basic concepts necessary for the handling and operation of a FDM 3D printer, the types of filaments and the advanced applications of 3D printing in biomedicine such as the fabrication of scaffolds for tissue engineering and the bioprinting of cells combined with biomaterials.

Downloads

Download data is not yet available.

References

Wickramasinghe S, Do T, Tran P. FDM-Based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Vol. 12, Polymers. MDPI AG; 2020, pp. 1-42.

Berman B. 3-D printing: The new industrial revolution. Bus Horiz. 2012 Mar;55(2):155-62.

Fudos I, Ntousia M, Stamati V, Charalampous P, Kontodina T, Kostavelis I, et al. A Characterization of 3D Printability. In CAD Solutions, LLC; 2020, pp. 363-7.

Bekas DG, Hou Y, Liu Y, Panesar A. 3D printing to enable multifunctionality in polymer-based composites: A review. Vol. 179, Composites Part B: Engineering. Elsevier Ltd; 2019, p. 107540.

Nkomo N, Gwamuri J, Roselyn N, Ndebele S, Nkiwane L, Nkomo NZ, et al. A Study of Applications of 3D printing technology and potential applications in the plastic thermoforming industry. Vol. 07, International organization of Scientific Research. 2017 [consultado: 26 enero 2021]. Disponible en: www.iosrjen.org

Ortiz-Acosta D, Moore T. Functional 3D Printed Polymeric Materials. En: Functional Materials. IntechOpen; 2019.

Saroia J, Wang Y, Wei Q, Lei M, Li X, Guo Y, et al. A review on 3D printed matrix polymer composites: its potential and future challenges. Vol. 106, International Journal of Advanced Manufacturing Technology. Springer; 2020, pp. 1695-721.

Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015 Mar 1;9(1):4 [consultado: 22 enero 2021]. Disponible en: http://www.jbioleng.org/content/9/1/4

Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Vol. 143, Composites Part B: Engineering. Elsevier Ltd; 2018, pp. 172-96.

Singh H. A comprehensive study on 3D printing technology; 2020.

Aspler J, Kingsland A, Cormier LM, Zou X. 3D printing – A review of technologies, markets, and opportunities for the forest industry; 2016.

Zuluaga F. Algunas aplicaciones del ácido poli-L-láctico. Rev la Acad Colomb ciencias exactas, físicas y Nat. 2013;37(142) [consultado: 25 enero 2021]. Disponible en: http://www.scielo.org. co/scielo.php?script=sci_arttext&pid=S0370-39082013000100009

Muñoz J, Pumera M. 3D-printed biosensors for electrochemical and optical applications. Vol. 128, TrAC - Trends in Analytical Chemistry. Elsevier B. V.; 2020, p. 115933.

Li X, Cui R, Sun L, Aifantis KE, Fan Y, Feng Q, et al. 3D-printed biopolymers for tissue engineering application. Vol. 2014, International Journal of Polymer Science. Hindawi Publishing Corporation; 2014.

Fornells E, Murray E, Waheed S, Morrin A, Diamond D, Paull B, et al. Integrated 3D printed heaters for microfluidic applications: Ammonium analysis within environmental water. Anal Chim Acta. 2020 Feb 15;1098:94-101.

Muta S, Ikeda M, Nikaido T, Sayed M, Sadr A, Suzuki T, et al. Chairside fabrication of provisional crowns on FDM 3D-printed PVA model. J Prosthodont Res. 2020 Oct 1;64(4):401- 7 [consultado: 28 enero 2021]. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/ S1883195819304293

Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res Part A. 2017 May 1;105(5):1457-68 [consultado: 12 febrero 2021]. Disponible en: http://doi.wiley. com/10.1002/jbm.a.36036

Hu X, Kang H, Li Y, Geng Y, Wang R, Zhang L. Preparation, morphology and superior performances of biobased thermoplastic elastomer by in situ dynamical vulcanization for 3D-printed materials. Polymer (Guildf). 2017 Jan 13;108:11-20.

Georgopoulou A, Sebastian T, Clemens F. Thermoplastic elastomer composite filaments for strain sensing applications extruded with a fused deposition modelling 3D printer. Flex Print Electron. 2020 Sep 1;5(3):35002 [consultado: 28 enero 2021]. Disponible en: https://doi. org/10.1088/2058-8585/ab9a22

Korger M, Bergschneider J, Lutz M, Mahltig B, Finsterbusch K, Rabe M. Possible applications of 3D printing technology on textile substrates. En: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing; 2016, p. 012011 [consultado: 28 enero 2021]. Disponible en: https://iopscience.iop.org/article/10.1088/1757-899X/141/1/012011

Mogan Y, Periyasamy R. Thermoplastic elastomer infill pattern impact on mechanical properties 3D printed customized orthotic insole. ARPN J Eng Appl Sci. 2016;11(10) [consultado: 28 enero 2021]. Disponible en: https://www.researchgate.net/publication/304887411

Han X, Yang D, Yang C, Spintzyk S, Scheideler L, Li P, et al. Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications. J Clin Med. 2019 Feb 12;8(2):240 [consultado: 28 enero 2021]. Disponible en: http://www.mdpi. com/2077-0383/8/2/240

Radhakrishnan S, Nagarajan S, Belaid H, Farha C, Iatsunskyi I, Coy E, et al. Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Mater Sci Eng C. 2021 Jan 1;118.

Restrepo E, Restrepo M. Synergy between 3D Models and Tissue Engineering to Optimize Sinus Lift, Implant Placement and Immediate Loading in Partially Edentulous Patients. Artic Int J Oral Implantol Clin Res. 2013 [consultado: 11 febrero 2021]. Disponible en: https://www. researchgate.net/publication/271261428

Ponnamma D, Yin Y, Salim N, Parameswaranpillai J, Thomas S, Hameed N. Recent progress and multifunctional applications of 3D printed graphene nanocomposites. Vol. 204, Composites Part B: Engineering. Elsevier Ltd; 2021.

Prashantha K, Roger F. Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling. J Macromol Sci Part A Pure Appl Chem. 2017 Jan 2;54(1):24-9 [consultado: 28 enero 2021]. Disponible en: https://www.tandfonline.com/doi/ abs/10.1080/10601325.2017.1250311

Jakus AE, Shah RN. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res Part A. 2017 Jan 1;105(1):274-83 [consultado: 28 enero 2021]. Disponible en: http://doi.wiley.com/10.1002/jbm.a.35684

Sherrell PC, Mattevi C. Mesoscale design of multifunctional 3D graphene networks. Vol. 19, Materials Today. Elsevier B.V.; 2016, pp. 428-36.

Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: A review and prospective. Vol. 110, Composites Part B: Engineering. Elsevier Ltd; 2017, pp. 442-58.

Haider HK, Lei Y, Ashraf M. MyoCell, a cell-based, autologous skeletal myoblast therapy for the treatment of cardiovascular diseases. Curr Opin Mol Ther. 2008;10(6):611-21.

Dong C, Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Vol. 8, Polymers. MDPI AG; 2016 [consultado: 24 enero 2021]. Disponible en: / pmc/articles/PMC6432532/?report=abstract

Gregor A, Filová E, Novák M, Kronek J, Chlup H, Buzgo M, et al. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng. 2017 Oct 16;11(1) [consultado: 3 diciembre 2020]. Disponible en: /pmc/articles/ PMC5641988/?report=abstract

Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 2013 Mar 1;9(3):5521-30.

Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006 Oct 22;3(10):589-601 [consultado: 24 enero 2021]. Disponible en: https://royalsocietypublishing.org/doi/10.1098/ rsif.2006.0124

Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet. 2010 Aug 7;376(9739):440-8.

Serrano-Aroca Á, Vera-Donoso CD, Moreno-Manzano V. Bioengineering approaches for bladder regeneration. Vol. 19, International Journal of Molecular Sciences. 2018, p. 1796.

Abreu E. Scaffolding in Tissue Engineering. Biomed Eng Online. 2006 Dec;5(1):52 [consultado: 22 diciembre 2020]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1594575/

Gioumouxouzis CI, Karavasili C, Fatouros DG. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Vol. 24, Drug Discovery Today. Elsevier Ltd; 2019, pp. 636-43.

Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015 Oct 30;494(2):643-50.

Murphy S V., Atala A. 3D bioprinting of tissues and organs. Vol. 32, Nature Biotechnology. Nature Publishing Group; 2014, pp. 773-85 [consultado: 12 febrero 2021]. Disponible en: https:// www.nature.com/articles/nbt.2958

Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, et al. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport. 2009 May 27;20(8):798-803 [consultado: 24 enero 2021]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19369905/

Ali M, PR AK, Yoo JJ, Zahran F, Atala A, Lee SJ. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Adv Healthc Mater. 2019 Apr 6;8(7):1800992 [consultado: 24 enero 2021]. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/ adhm.201800992

Kim JH, Seol YJ, Ko IK, Kang HW, Lee YK, Yoo JJ, et al. 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Sci Rep. 2018 Dec 1;8(1) [consultado: 24 enero 2021]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30120282/

Skardal A, Devarasetty M, Kang HW, Seol YJ, Forsythe SD, Bishop C, et al. Bioprinting cellularized constructs using a tissue-specific hydrogel bioink. J Vis Exp. 2016 Apr 1;2016(110) [consultado: 24 enero 2021]. Disponible en: /pmc/articles/PMC4941985/?report=abstract

Liu K, Zhang Q, Li X, Zhao C, Quan X, Zhao R, et al. Preliminary application of a multilevel 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. Eur Spine J. 2017 Jun 1;26(6):1684-9 [consultado: 24 enero 2021]. Disponible en: https://link. springer.com/article/10.1007/s00586-016-4926-1

George M, Aroom KR, Hawes HG, Gill BS, Love J. 3D Printed Surgical Instruments: The Design and Fabrication Process. World J Surg. 2017 Jan 1;41(1):314-9.

Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG. Three-dimensional printing surgical instruments: Are we there yet? J Surg Res. 2014 Jun 15;189(2):193-7.

Published

2021-11-15