Determination of the toxic activity of optimized extracts of Palmaria and Porphyra as a treatment for ischemia-reperfusion injury


  • David Polanco Irisarri Universidad Católica de Valencia
  • C. Padrón Sanz Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir.



antioxidants, algae, HaCaT, MTT, artemia


The ischemia/reperfusion (I/R) injury can cause rejections in organ transplantation surgeries due to the damage that Radical Oxigen Species (ROS) produce in the cells. It has been proved that natural antioxidants can reduce this damage. A lot of algae extracts show a noticeable antioxidant activity, but it is needed to test their toxicity before suggesting them as potential drugs. In this study, two toxicologic assays using human immortalized keratinocytes (HaCaT) and Artemia salina nauplii were carried out to test the toxicity of two extracts that showed antioxidant activity from Palmaria palmata and Porphyra sp. LC50 values of 7.843% (v/v) of extract concentration with P. palmata in the HaCaT assay and 3.2583% (v/v) in the A. salina assay were obtained, while 10.7463% (v/v) of extract concentration for the HaCaT assay and 6.5688% (v/v) for the A. salina assay were obtained for Porphyra sp. The No Observed Adverse Effect Level (NOAEL) obtained for each algae in each assay showed a significantly higher toxicity level in the P. palmata extract than in the Porphyra sp. extract (p < 0.05). Lastly, an index which considers both antioxidant activity and toxicity of each extract was proposed for predicting their in vivo efficiency, supporting the previous results, so Porphyra sp. extract was considered the most suitable for going ahead with the preclinic assays towards the development of a drug for treating the I/R injury.


Download data is not yet available.


Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia-reperfusion injury. Shock. 2004;21(5):401-9.

Ponticelli C. Ischaemia-reperfusion injury: A major protagonist in kidney transplantation. Nephrol Dial Transplant. 2014;29(6):1134-40.

Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant. 2017;5(2):52.

Kaskel FJ, Feuerstein D, Castaneda MP, Swiatecka-Urban A, Devarajan P, Tellis V, et al. Activation of Mitochondrial Apoptotic Pathways in Human Renal Allografts After Ischemia-Reperfusion Injury. Transplantation. 2003;76(1):50-4.

Saat TC, van den Akker EK, IJzermans JNM, Dor FJMF, de Bruin RWF. Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: Lost in translation? J Transl Med. 2016;14(1):1-9.

Belda-Antolí M, Padrón-Sanz C, Cejalvo-Lapeña D, Prieto-Moure B, Lloris-Cejalvo JM, Lloris-Carsí JM. Antioxidant potential of Himanthalia elongata for protection against ischemia-reperfusion injury in the small bowel. Surg (United States). 2017;162(3):577-85.

Guerra JIE. Elejalde Guerra JI. Estrés oxidativo, enfermedades y tratamientos antioxidantes. An Med Interna. 2001;18:326-35.

Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011;17(11):1391-401.

Gupta DK, Palma JM, Corpas FJ, editors. Antioxidants and Antioxidant Enzymes in Higher Plants. Primera ed. Cham, Suiza: Springer Nature; 2018.

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.

Pryor WA, Cornicelli JA, Devall LJ, Tait B, Trivedi BK, Witiak DT, et al. A Rapid Screening Test To Determine the Antioxidant Potencies of Natural and Synthetic Antioxidants. J Org Chem. 1993;58(13):3521-32.

Farag RS, El-Baroty GS, Basuny AM. The influence of phenolic extracts obtained from the olive plant (cvs. Picual and Kronakii), on the stability of sunflower oil. Int J Food Sci Technol. 2003;38(1):81-7.

McCarthy TL, Kerry JP, Kerry JF, Lynch PB, Buckley DJ. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin e in raw and cooked pork patties. Meat Sci. 2001;58(1):45-52.

Pokorný J. Are natural antioxidants better -and safer- than synthetic antioxidants? Eur J Lipid Sci Technol. 2007;109(6):629-42.

Wang Y, Li W, Xu S, Hu R, Zeng Q, Liu Q, et al. Protective skin aging effects of cherry blossom extract (Prunus yedoensis) on oxidative stress and apoptosis in UVB-irradiated HaCaT cells. Cytotechnology. 2019;7.

Barreira JCM, Morais AL, Ferreira ICFR, Oliveira MBPP. Insights on the formulation of herbal beverages with medicinal claims according with their antioxidant properties. Molecules. 2013;18(3):2851-63.

He C, Xing J, Jiang W, Wang W, Zeng C, Yang X. Pretreatment with Total Flavonoid Extract from Dracocephalum moldavica L. Attenuates Ischemia Reperfusion-induced Apoptosis. Sci Rep. 2018;8(1):1-14.

Petkovic A, Jeremic J, Jakovljevic V, Sobot T, Zivkovic V, Bradic J, et al. Protective Effects of Galium verum L. Extract against Cardiac Ischemia/Reperfusion Injury in Spontaneously Hypertensive Rats. Oxid Med Cell Longev. 2019;2019:1-11.

Takayama C, Luiz-Ferreira A, Vilegas W, Salvador MJ, Almeida ACA, Dunder RJ, et al. Antioxidant Action of Mangrove Polyphenols against Gastric Damage Induced by Absolute Ethanol and Ischemia-Reperfusion in the Rat. Sci World J. 2012;2012:1-9.

Viswanatha GL, Venkataranganna MV. Methanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms. 2018;(13).

Zeng K-W, Tu P-F, Liu L-Y, Jiang Y, Song W-T, Liu Y-Q, et al. The Ethanolic Extract of Caesalpinia sappan Heartwood Inhibits Cerebral Ischemia/Reperfusion Injury in a Rat Model Through a Multi-Targeted Pharmacological Mechanism. Front Pharmacol. 2019;10(February):1-15.

Li J, Zhang QH, Li S, Dai W, Feng J, Wu L, et al. The natural product fucoidan ameliorates hepatic ischemia-reperfusion injury in mice. Biomed Pharmacother. 2017;94:687-96.

Shobha JC, Kutala VK, Naidu MU, Parinandi NL, Tridandapani S, Kuppusamy P, et al. C-phycocyanin protects against ischemia-reperfusion injury of heart through involvement of p38 MAPK and ERK signaling. Am J Physiol Circ Physiol. 2005;290(5):H2136-45.

Zhu H, Tian J, Li C, Gao Y, Xing Y, Shen J. Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia-reperfusion injury in rats via regulating the inflammation response. Food Chem Toxicol. 2011;49(9):2090-5.

Qin SG, Tian HY, Wei J, Han ZH, Zhang MJ, Hao GH, et al. 3-bromo-4,5-dihydroxybenzaldehyde protects against myocardial ischemia and reperfusion injury through the akt-PGC1α-Sirt3 pathway. Front Pharmacol. 2018;9(JUL):1-9.

Sun C, Wu F, Chen D, Ge J. Therapeutic effects of polysaccharides extracted from Porphyra yezoensis in rats with cerebral ischemia/reperfusion injury. Arch Biol Sci. 2018;70(2):233-9.

Campos PMBGM, Benevenuto CG, Calixto LS, O. Melo M, Pereira KC, Gaspar LR. Spirulina, Palmaria palmata, Cichorium intybus, and Medicago sativa extracts in cosmetic formulations: an integrated approach of in vitro toxicity and in vivo acceptability studies. Cutan Ocul Toxicol. 2019;9527:1-25.

Hartung T. From alternative methods to a new toxicology. Eur J Pharm Biopharm. 2011;77(3):338-49.

Xu JJ, Urban L. The human predictive value of combined animal toxicity testing. In: Xu JJ, Urban L, editors. Predictive Toxicology in Drug Safety. Primera ed. New York, EE. UU.: Cambridge University Press. 2011;1-17.

Wilson VG. Growth and Differentiation of HaCaT Keratinocytes. Methods Mol Biol. 2016;1341:257-84.

Li L, Huang T, Lan C, Ding H, Yan C, Dou Y. Protective effect of polysaccharide from Sophora japonica L. flower buds against UVB radiation in a human keratinocyte cell line (HaCaT cells). J Photochem Photobiol B Biol. 2019;191:135-42.

Turkoglu M, Pekmezci E, Kilic S, Dundar C, Sevinc H. Effect of Ficus carica leaf extract on the gene expression of selected factors in HaCaT cells. J Cosmet Dermatol. 2017;16(4):e54-8.

Ji D, You L, Ren Y, Wen L, Zheng G, Li C. Protective effect of polysaccharides from Sargassum fusiforme against UVB-induced oxidative stress in HaCaT human keratinocytes. J Funct Foods. 2017;36:332-40.

Kim S, You DH, Han T, Choi EM. Modulation of viability and apoptosis of UVB-exposed human keratinocyte HaCaT cells by aqueous methanol extract of laver (Porphyra yezoensis). J Photochem Photobiol B Biol. 2015;141:301-7.

Maruthanayagam V, Nagarajan M, Sundararaman M. Cytotoxicity assessment of cultivable marine cyanobacterial extracts in Artemia salina (brine shrimp) larvae and cancer cell lines. Toxin Rev. 2013;32(1):1-9.

Zubia M, Fabre MS, Kerjean V, Deslandes E. Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar. 2009;52(3):268-77.

Sanabria-Galindo A, López SI, Gualdrón R. Estudio fitoquimico preliminar y letalidad sobre Artemia salina de plantas colombianas. Rev Colomb Cienc Quím Farm. 1997;26(1):15-9.

Lopes G, Silva TMS da, Echevarria A. Toxicity from Crude Extracts and Glycoalkaloid Fractions of Solanum spp. Against Artemia salina and Biomphalaria glabrata. Rev Virtual Química. 2016;8(1).

Charoenphon N, Kangwanrangsan N, Jiraungkoorskul W. Artemia salina lethality and histopathological studies on bacopa monnieri leaf extract. Indian J Anim Res. 2018;52(4):610-4.

Rocha-Filho CAA, Albuquerque LP, Silva LRS, Silva PCB, Coelho LCBB, Navarro DMAF, et al. Assessment of toxicity of Moringa oleifera flower extract to Biomphalaria glabrata, Schistosoma mansoni and Artemia salina. Chemosphere. 2015;132:188-92.

Kim YD, Choi JS. Larvicidal effects of korean seaweed extracts on brine shrimp Artemia salina. J Anim Plant Sci. 2017;27(3):1039-46.

Blois M. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958;181(4617):1199-200.

Kiviranta J, Abdel-Hamed A. Toxicity of the blue-green alga Oscillatoria agardhii to the mosquito Aedes aegypti and the shrimp Artemia salina. World J Microbiol Biotechnol. 1994;10:517-20.

Kiviranta J, Sivonen K, Niemelä SI, Huovinen K. Detection of toxicity of cyanobacteria by Artemia salina bioassay. Environ Toxicol Water Qual. 1991;6(4):423-36.

Sarabia R. Toxicidad y acumulación de cadmio en poblaciones de diferentes especies de Artemia. Tesis Doctoral. Facultad de ciencias biológicas. Universidad de Valencia; 2002.

González Y, Gilling PA. Determinación de la toxicidad aguda del dicromato de potasio en larvas de Artemia salina. Anu Toxicol. 2001;1(1):104-8.

Wagemaker TAL, Rijo P, Rodrigues LM, Maia Campos PMBG, Fernandes AS, Rosado C. Integrated approach in the assessment of skin compatibility of cosmetic formulations with green coffee oil. Int J Cosmet Sci. 2015;37(5):506-10.

Bai SH, Ogbourne SM. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res. 2016;23(19):18988-9001.

Man S, Wang G, Liu C, Gao W. Annual advance of traditional medicine toxicity in 2018. TMR. 2018;4(3):111-7.

Nobakht M, Fattahi M, Hoormand M, Milanian I, Rahbar N, Mahmoudian M. A study on the teratogenic and cytotoxic effects of safflower extract. J Ethnopharmacol. 2000;73(3):453-9.

Parks AN, Portis LM, Schierz PA, Washburn KM, Perron MM, Burgess RM, et al. Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environ Toxicol Chem. 2013;32(6):1270-7.

Schiener P, Zhao S, Theodoridou K, Carey M, Mooney-McAuley K, Greenwell C. The nutritional aspects of biorefined Saccharina latissima, Ascophyllum nodosum and Palmaria palmata. Biomass Convers Biorefinery. 2017;7(2):221-35.

Bengtström L, Trier X, Granby K, Rosenmai AK, Petersen JH. Fractionation of extracts from paper and board food contact materials for in vitro screening of toxicity. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2014;31(7):1291-300.

Harnedy PA, O’Keeffe MB, FitzGerald RJ. Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate. Food Res Int. 2017;100:416-22.

Cedergreen N. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS One. 2014;9(5).

Sorgeloos P, Remiche-Van Der Wielen C, Persoone G. The use of Artemia nauplii for toxicity tests - A critical analysis. Ecotoxicol Environ Saf. 1978;2(3-4):249-55.

Lee D, Nishizawa M, Shimizu Y, Saeki H. Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a. Food Res Int. 2017;100(June):514-21.

Suwal S, Perreault V, Marciniak A, Tamigneaux É, Deslandes É, Bazinet L, et al. Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria palmata and Solieria chordalis. J Food Eng. 2019;252:53-9.

Nashan B, Abbud-Filho M, Citterio F. Prediction, prevention, and management of delayed graft function: where are we now? Vol. 30, Clinical Transplantation. 2016:1198-1208.

Smith SF, Hosgood SA, Nicholson ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells. Kidney Int. 2019;95(1):50-6.

Wu WK, Famure O, Li Y, Kim SJ. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney Int. 2015;88(4):851-8.

Tran BN, Richard O, Robin S, Robert J, Aldous KM. Use of methanol for the efficient extraction and analysis of melamine and cyanuric acid residues in dairy products and pet foods. J Agric Food Chem. 2010;58(1):101-7.

Masi S, De Cléty SC, Anslot C, Detaille T. Acute amiodarone toxicity due to an administration error: Could excipient be responsible?: Letter to the Editors. Br J Clin Pharmacol. 2009;67(6):691-3.

Osterberg RE, See NA. Toxicity of Excipients - A Food and Drug Administration Perspective. Int J Toxicol. 2003;22(5):377-80.

Scherließ R. The MTT assay as tool to evaluate and compare excipient toxicity in vitro on respiratory epithelial cells. Int J Pharm. 2011;411(1-2):98-105.

Álvarez-Gómez F, Korbee N, Casas-Arrojo V, Abdala-Díaz RT, Figueroa FL. UV photoprotection, cytotoxicity and immunology capacity of red algae extracts. Molecules. 2019;1-16.