Alginate and its vast range of industrial usages

Authors

  • Alejandro Hurtado Biomaterials and Bioengineering Lab. Centro de Investigación Traslacional San Alberto Magno. Universidad Católica de Valencia San Vicente Mártir.
  • Rafael Selgas Biomaterials and Bioengineering Lab. Centro de Investigación Traslacional San Alberto Magno. Universidad Católica de Valencia San Vicente Mártir.
  • Ángel Serrano Aroca Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia, 46001 Valencia

DOI:

https://doi.org/10.46583/nereis_2020.12.573

Keywords:

alginate, biomaterial, applications, biomedicine, 3d bioprinting, industry, immobilization, cells, enzymes, biomolecule release, hydrogels

Abstract

Alginate is a non-toxic, biodegradable, biocompatible, water-soluble and renewable biopolymer, usually extracted from brown algae or produced by microbial culture. This biomaterial has been approved by the Food and Drug Administration (FDA) for human use in certain biomedical applications. In addition, there is a wide range of alginate types designed with different properties depending on the specific application. This review aims to show the multiple applications of this biopolymer, which continues to grow exponentially due to its excellent chemical, physical and biological properties. Thus, current applications are present in important areas such as the pharmaceutical industry, chemical and textile industry, gastronomic and freezing industry, biotechnological immobilization of cells and enzymes, controlled release of biomolecules and biomedical industry. Finally, we will discuss its increasing use in 3D bioprinting applications.

References

Serrano-Aroca Á, Ruiz-Pividal JF, Llorens-Gámez M, Enhancement of water diffusion and compression performance of crosslinked alginate with a minuscule amount of graphene oxide, Sci. Rep. 2017;7:11684. DOI: 10.1038/s41598-017-10260-x.

Lee KY, Mooney DJ. Alginate: Properties and biomedical applications, Prog. Polym. Sci. 37. 2012:106-26. DOI: 10.1016/j.progpolymsci.2011.06.003.

Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties, Biomaterials. 2009;30:2724-34. DOI: 10.1016/j.biomaterials.2009.01.034.

Ethier A, Bansal P, Baxter J, Langley N. The Role of Excipients in the Microstructure of Topical Semisolid Drug Products, n.d. DOI: 10.1007/978-3-030-17355-5.

Fu S, Thacker A, Sperger DM, Boni RL, Velankar S, Munson EJ, Block LH. Rheological evaluation of inter-grade and inter-batch variability of sodium alginate, AAPS PharmSciTech. 2010;11:1662-74. DOI: 10.1208/s12249-010-9547-0.

Efentakis M, Buckton G. The effect of erosion and swelling on the dissolution of theophylline from low and high viscosity sodium alginate matrices, Pharm. Dev. Technol. 2002;7:69-77. DOI: 10.1081/PDT-120002232.

Fertah M. Isolation and Characterization of Alginate from Seaweed, Elsevier Inc.; 2017. DOI: 10.1016/B978-0-12-809816-5.00002-5.

Chan AWJ, Mazeaud I. Becker T. Neufeld RJ. Granulation of subtilisin by internal gelation of alginate microspheres for application in detergent formulation, Enzyme Microb. Technol. 2006;38:265-72. DOI: 10.1016/j.enzmictec.2005.08.018.

Yamamoto T. R.U.S.A. Data, United States Patent. 1997;19.

Yuen CWM, Ku SKA, Choi PS, Kan CW. The effect of the pretreatment print paste contents on colour yield of an ink-jet printed cotton fabric, Fibers Polym. 2004;5:117-21. DOI: 10.1007/BF02902924.

Abdel-Halim ES, Emam HE, El-Rafie MH. Utilization of hydroxypropyl cellulose and poly(acrylic acid)-hydroxypropyl cellulose composite as thickeners for textile printing, Carbohydr. Polym. 2008;74:938-41. DOI: 10.1016/j.carbpol.2008.05.013.

Perrin Akcakoca Kumbasar E, Bide M. Reactive dye printing with mixed thickeners on viscose. Dye. Pigment. 2000;47:189-99. DOI: 10.1016/S0143-7208(00)00075-9.

Heliopoulos NS, Papageorgiou SK, Galeou A, Favvas EP, Katsaros FK, Stamatakis K. Effect of copper and copper alginate treatment on wool fabric. Study of textile and antibacterial properties. Surf. Coatings Technol. 2013;235:24-31. DOI: 10.1016/j.surfcoat.2013.07.009.

Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M. Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydr. Polym. 2010;79:526-32. DOI: 10.1016/j.carbpol.2009.08.036.

Fan L, Du Y, Huang R, Wang Q, Wang X, Zhang L. Preparation and characterization of alginate/gelatin blend fibers, J. Appl. Polym. Sci. 2005;96:1625-9. DOI: 10.1002/app.21610.

Niekraszewicz B, Niekraszewicz A. The structure of alginate, chitin and chitosan fibres, Woodhead Publishing Limited. 2009. DOI: 10.1533/9781845697310.2.266.

Petrulyte S. Advanced textile materials and biopolymers in wound management. Dan. Med. Bull. 2008;55:72-7.

Herrera-Alonso M, McCarthy TJ, Jia X. Nylon surface modification: 2. Nylon-supported composite films, Langmuir. 2006;22:1646-51. DOI: 10.1021/la0526737.

Corona-Hernandez RI, Álvarez-Parrilla E, Lizardi-Mendoza J, Islas-Rubio AR, de la Rosa LA, Wall-Medrano A. Structural stability and viability of microencapsulated probiotic bacteria: A review. Compr. Rev. Food Sci. Food Saf. 2013;12:614-28. DOI: 10.1111/1541-4337.12030.

Sheu TY, Marshall RT. Microentrapment of Lactobacilli in Calcium Alginate Gels. J. Food Sci. 1993;58:557-61. DOI: 10.1111/j.1365-2621.1993.tb04323.x.

Bahramparvar M, Tehrani MM. Application and functions of stabilizers in ice cream. Food Rev. Int. 2011;27:389-407. DOI: 10.1080/87559129.2011.563399.

Cook DJ, Hollowood TA, Linforth RST, Taylor AJ. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 2005;40:631-41. DOI: 10.1111/j.1365-2621.2005.00973.x.

Regand A, Goff HD. Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids. 2003;17:95-102. https://doi.org/10.1016/S0268-005X(02)00042-5.

Probst Y. A review of the nutrient composition of selected rubus berries. 2015. DOI: 10.1108/NFS-07-2014-0063.

Kothalawala SG, Sivakumaran K. An overview of nanotechnology applications in food industry. Int. J. Sci. Res. Publ. 2018;8:35-40. DOI: 10.29322/ijsrp.8.7.2018.p7954.

This H. Molecular gastronomy is a scientific discipline, and note by note cuisine is the next culinary trend, Flavour. 2013;2: 1-8. DOI: 10.1186/2044-7248-2-1.

Lee P, Rogers MA. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. Int. J. Gastron. Food Sci. 2012;1:96-100. DOI: 10.1016/j.ijgfs.2013.06.003.

Aguilera JM. Relating Food Engineering to Cooking and Gastronomy. Compr. Rev. Food Sci. Food Saf. 2018;17:1021-39. DOI: 10.1111/1541-4337.12361.

Tsai FH, Chiang PY, Kitamura Y, Kokawa M, Islam MZ. Producing liquid-core hydrogel beads by reverse spherification: Effect of secondary gelation on physical properties and release characteristics. Food Hydrocoll. 2017;62:140-8. DOI: 10.1016/j.foodhyd.2016.07.002.

Yuasa M, Tagawa Y, Tominaga M. The texture and preference of “mentsuyu (Japanese noodle soup base) caviar” prepared from sodium alginate and calcium lactate. Int. J. Gastron. Food Sci. 2019;18:100178. https://doi.org/10.1016/j.ijgfs.2019.100178.

Sa G, Aa K, Tr S. Characterization of flavoured sweet water balls prepared by basic spherification technique, 2019;7:1714-8.

Y. Qin, J. Jiang, L. Zhao, J. Zhang, F. Wang, Food Ingredient, Elsevier Inc., 2018. DOI: 10.1016/B978-0-12-811449-0/00013-X.

P. Sriamornsak, Preliminary investigation of some polysaccharides as a carrier for cell entrapment, Eur. J. Pharm. Biopharm. 46 (1998) 233-6. DOI: 10.1016/S0939-6411(98)00021-6.

Manolov RJ, Kambourova MS, Emanuilova EI. Immobilization of Bacillus stearothermophilus Cells by Entrapment in Various Matrices, Process Biochem. 1995;30:141-4. DOI: 10.1016/0032-9592(95)80004-2.

Taha Ibrahim Zaghloul, Ahmad Rafik EL-Mahdy, Mohammad Hisham EL-Massry, Ben Amar Cheba. Enhanced Production of Bacillus sp. R2 Chitinase through Cell Immobilization. 2011: 8-13.

Pierre AC. The sol-gel encapsulation of enzymes, Biocatal. Biotransformation. 2004;22:145-70. DOI: 10.1080/10242420412331283314.

Ferrer P, Solà C. Lipase production by immobilized Candida rugosa cells. Appl. Microbiol. Biotechnol. 1992;37:737-41. DOI: 10.1007/BF00174838.

Chakraborty S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J. Carbohydr. Chem. 2017;36:1-19. DOI: 10.1080/07328303.2017.1347668.

Marpani F, Luo J, Mateiu RV, Meyer AS, Pinelo M. In Situ Formation of a Biocatalytic Alginate Membrane by Enhanced Concentration Polarization,ACS Appl. Mater. Interfaces. 2015;7:17682-91. DOI: 10.1021/acsami.5b05529.

Xu SW, Lu Y, Li J, Jiang ZY, Wu H. Efficient conversion of CO 2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO 2 ) hybrid gel, Ind. Eng. Chem. Res. 2006;45:4567-73. DOI: 10.1021/ie051407l.

Taqieddin E, Amiji M. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules, Biomaterials. 2004;25:1937-45. DOI: 10.1016/j.biomaterials.2003.08.034.

Blandino A, Macías M, Cantero D. Immobilization of glucose oxidase within calcium alginate gel capsules, Process Biochem. 2001;36:601-6. DOI: 10.1016/S0032-9592(00)00240-5.

Subramaniam A, Reilly A. Preparation of microcapsules. 2004;4.

Palmieri G, Giardina P, Desiderio B, Marzullo L, Giamberini M, Sannia G. A new enzyme immobilization procedure using copper alginate gel: Application to a fungal phenol oxidase. Enzyme Microb. Technol. 1994;16:151-8. DOI: 10.1016/0141-0229(94)90078-7.

Beris AE, Lykissas MG, Papageorgiou CD, Georgoulis AD. Advances in articular cartilage repair. 2005:14-23. DOI: 10.1016/j.injury.2005.10.007.

Spermvital. http://www.spermvital.com/. [Consultado: 30 de enero de 2020].

Raizada K, Rani D. Ocular prosthesis. Contact Lens Anterior Eye. 2007;30:152-62. DOI: 10.1016/j.clae.2007.01.002.

Liu W, Griffith M, Li F. Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J. Mater. Sci. Mater. Med. 2008;19:3365-71. DOI: 10.1007/s10856-008-3486-2.

Silva D, Pinto LFV, Bozukova D, Santos LF, Serro AP, Saramago B. Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surfaces B Biointerfaces. 2016;147:81-9. DOI: 10.1016/j.colsurfb.2016.07.047.

Kulkarni MM, Thombare RU. Dimensional changes of alginate dental impression materials-an invitro study. J. Clin. Diagnostic Res. 2015;9:ZC98-ZC102. DOI: 10.7860/JCDR/2015/13627.6407.

Inoue K, Song YX, Fujii K, Kadokawa A, Kanie T. Consistency of alginate impression materials and their evaluation. J. Oral Rehabil. 1999;26:203-7. DOI: 10.1046/j.1365-2842.1999.00382.x.

Cook W. Alginate dental impression materials: Chemistry, structure, and properties. J. Biomed. Mater. Res. 1986;20:1-24. DOI: 10.1002/jbm.820200103.

Kanafi MM, Ramesh A, Gupta PK, Bhonde RR. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int. Endod. J. 2014(47):687-97. DOI: 10.1111/iej.12205.

Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, Schricker SR, Shi S. Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. J. Mater. Sci. Mater. Med. 2012;23:3041-51. DOI: 10.1007/s10856-012-4759-3.

Yamamoto Y, Mendel E, Raffel C. Acrylic cranioplasty with alginate molding: Technical note, Neurosurgery. 1997;41:305-7. DOI: 10.1097/00006123-199707000-00055.

Blind A, Hulterström A, Berggren D. Treatment of nasal septal perforations with a custom-made prosthesis. Eur. Arch. Oto-Rhino-Laryngology. 2009;266:65-9. DOI: 10.1007/s00405-008-0690-0.

Eaton LD, Dryden RM, Popp JC, Harner D. Functional Anatomical Reconstruction in an Oculofacial Prosthesis. Ophthalmology. 1984;91: 984-6. DOI: 10.1016/S0161-6420(84)34205-1.

Purcell EK, Seymour JP, Yandamuri S, Kipke DR. In vivo evaluation of a neural stem cell-seeded prosthesis. J. Neural Eng. 2009;6:026005. DOI: 10.1088/1741-2560/6/2/026005.

Cervino G, Fiorillo L, Herford AS, Laino L, Troiano G, Amoroso G, Crimi S, Matarese M, D’Amico C, Siniscalchi EN, Cicciù M. Alginate materials and dental impression technique: A current state of the art and application to dental practice. Mar. Drugs. 2019;17:1-15. DOI: 10.3390/md17010018.

Sun J, Wei D, Yang K, Yang Y, Liu X, Fan H, Zhang X. The development of cell-initiated degradable hydrogel based on methacrylated alginate applicable to multiple microfabrication technologies. J. Mater. Chem. B. 2017;5:8060-9. DOI: 10.1039/c7tb01458a.

Eliaz I, Weil E, Wilk B. Integrative medicine and the role of modified citrus pectin/alginates in heavy metal chelation and detoxification - Five case reports, Forsch. Komplementarmed. 2007;14:358-64. DOI: 10.1159/000109829.

Baldassarre ME, Di Mauro A, Pignatelli MC, Fanelli M, Salvatore S, Di Nardo G, Chiaro A, Pensabene L, Laforgia N. Magnesium Alginate in Gastro-Esophageal Reflux: A Randomized Multicenter Cross-Over Study in Infants. Int J Environ Res Public Health. 2020;17:83.

Langer R. Biomaterials in Drug Delivery and Tissue Engineering: One Laboratory’s. Experience. 2000;33:94-101.

Li C, Vepari C, Jin H, Joo H, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. 2006;27:3115-24. DOI: 10.1016/j.biomaterials.2006.01.022.

Richmon JD, Sage AB, Shelton E, Schumacher BL, Sah RL, Watson D. Effect of Growth Factors on Cell Proliferation, Matrix Deposition, and Morphology of Human Nasal Septal Chondrocytes Cultured in Monolayer. 2005:1553-60.

AlgiPharma. https://algipharma.com/. [Consultado: 30 de enero de 2020].

Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 2016;17. DOI: 10.3390/ijms17121976.

Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016;34:312-9. DOI: 10.1038/nbt.3413.

Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting, Biofabrication. 2016;8: DOI: 10.1088/1758-5090/8/3/032002.

Jia J, Richards DJ, Pollard S, Tan Y, Rodriguez J, Visconti RP, Trusk TC, Yost MJ, Yao H, Markwald RR, Mei Y. Engineering alginate as bioink for bioprintin. Acta Biomater. 2014;10:4323-31. DOI: 10.1016/j.actbio.2014.06.034.

Wüst S, Godla ME, Müller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10:630-40. DOI: 10.1016/j.actbio.2013.10.016.

Zhang Y, Yu Y, Chen H, Ozbolat IT. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication. 2013;5:1-23. DOI: 10.1088/1758-5082/5/2/025004.

Poldervaart MT, Wang H, Van Der Stok J, Weinans H, Leeuwenburgh SCG, Oner FC, Dhert WJA, Alblas J. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One. 2013;8. DOI: 10.1371/journal.pone.0072610.

Rinaudo M. Biomaterials based on a natural polysaccharide: alginate. TIP. 2014;17:92-6.

Bilbao-Sainz C, Chiou BS, Glenn GM, Orts WJ. Biobased adhesives, gums, emulsions, and binders: current trends and future prospects. Journal of Adhesion Science and Technology. 2013;27:1972-97

Dickinson BBE. Food Colloids: Proteins, Lipids and Polysaccharides. Woodhead publishing limited. Cambridge. 2004.

Lacostea C, El Hage R, Bergeret A, Corna S, Lacroixc P. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydrate Polymers. 2018;184:1-8

Hunt NC, Shelton RM, Grover LM. An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture. Biotechnol. J. 2009;4:730-7. DOI: 10.1002/biot.200800292.

Sun J, Tan H. Alginate-Based Biomaterials for Regenerative Medicine Applications. 2013:1285-309. DOI: 10.3390/ma6041285.

Silva D, Pinto LFV, Bozukova D, Santos LF, Serro AP, Saramago B. Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surfaces B Biointerfaces. 2016;147:81-9. https://doi.org/10.1016/j.colsurfb.2016.07.047.

Andersen T, Auk-emblem P, Dornish M. 3D Cell Culture in Alginate Hydrogels. 2015:133-61. DOI: 10.3390/microarrays4020133.

Suleria HA, Osborne S, Gobe G. Marine-based Nutraceuticals: An innovative Trend in the Food and Supplement Industries. 2015:6336-51. DOI: 10.3390/md13106336.

Akira M, Luis D. Rheological evaluation of Laponite / alginate inks for 3D extrusion-based printing; 2018.

Sugawara E, Nikaido H. Alginates: Biology and Applications, Antimicrob. Agents Chemother. 2009;13:7250-7. DOI: 10.1007/978-3-540-92679-5.

Storebakken T. Binders in fish feeds: I. Effect of alginate and guar gum on growth, digestibility, feed intake and passage through the gastrointestinal tract of rainbow trout. Aquaculture. 1985;47:11-26.

Lan S, Kehinde T, Zhang X, Khajotia S, Schmidtke DW, Starly B. Controlled release of metronidazole from composite poly-ƹ-caprolactone / alginate ( PCL / alginate ) rings for dental. Dent. Mater. 2013:1-10. DOI: 10.1016/j.dental.2013.03.014.

Burhouse S, Hartman TPV. Casts of fluid preserved specimens. Methods Mol. Biol. 2019;1897:155-62. DOI: 10.1007/978-1-4939-8935-5_16.

Cazon A, Aizpurua J, Paterson A, Bibb R, Campbell RI. Customised design and manufacture of protective face masks combining a practitioner-friendly modelling approach and low-cost devices for digitising and additive manufacturing: This paper analyses the viability of replacing conventional practice with AM method to make customized protective face masks. Virtual Phys. Prototyp. 2014;9:251-61. DOI: 10.1080/17452759.2014.958648.

Published

2020-06-26